The Asymptotic Optimality of the LPT Rule
نویسندگان
چکیده
For the problem of minimizing makes pan on parallel machines of different speed, the behaviour of list scheduling rules is subjected to a probabilistic analysis under the assumption that the processing requirements of the jobs are independent, identically distributed nonnegative random variables. Under mild conditions on the probability distribution, we obtain strong asymptotic optimality results for arbitrary list scheduling and even stronger ones for the LPT (Longest Processing Time) rule, in which the jobs are assigned to the machines in order of nonincreasing processing requirements.
منابع مشابه
On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملOn Efficiency Criteria in Density Estimation
We discuss the classical efficiency criteria in density estimation and propose some variants. The context is a general density estimation scheme that contains the cases of i.i.d. or dependent random variables, in discrete or continuous time. Unbiased estimation, optimality and asymptotic optimality are considered. An example of a density estimator that satisfies some suggested criteria is given...
متن کاملOptimal Simple Step-Stress Plan for Type-I Censored Data from Geometric Distribution
Abstract. A simple step-stress accelerated life testing plan is considered when the failure times in each level of stress are geometrically distributed under Type-I censoring. The problem of choosing the optimal plan is investigated using the asymptotic variance-optimality as well as determinant-optimality and probability-optimality criteria. To illustrate the results of the paper, an example i...
متن کاملOptimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data
The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...
متن کاملAsymptotic optimality of sparse linear discriminant analysis with arbitrary number of classes
Many sparse linear discriminant analysis (LDA) methods have been proposed to overcome the major problems of the classic LDA in high-dimensional settings. However, the asymptotic optimality results are limited to the case that there are only two classes, which is due to the fact that the classification boundary of LDA is a hyperplane and explicit formulas exist for the classification error in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Oper. Res.
دوره 12 شماره
صفحات -
تاریخ انتشار 1987